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ABSTRACT 

  Surface hardness is typically measured using a Clegg Impact Soil Tester (ASTM F355-

D), but recent trends in sports turf are to use the F355-E missile as a potential alternative, 

because it may provide a more meaningful measurement.  Forty traffic events were applied to 

‘Tifway’ bermudagrass grown in an ASTM constructed sand root zone and a silt loam soil on the 

Center for Athletic Field Safety at the University of Tennessee.  An F355-E was used to measure 

head injury criteria (HIC) for both root zones after every eight traffic events.  Head injury criteria 

values were regressed to varying drop heights to calculate critical fall height (CFH) for both root 

zones.  Critical fall height is the maximum height an athlete can fall from where the surface 

meets the impact attenuation performance criterium (1000 HIC) established by World Rugby for 

synthetic turf surfaces.  Critical fall height for the ASTM constructed sand root zone was 2.3 m, 

while CFH for the silt loam soil was 2.0 m.  The differences in CFH were due to soil 

compaction.  After 40 traffic events, the average soil bulk density of the ASTM constructed sand 

root zone was 1.3 g/cm3, and the silt loam was 1.4 g/cm3.  A 2.3 m CFH of the ASTM root zone 

occurred during the initial testing, before the loss of green turf cover.  A 2.0 m CFH of the silt 

loam soil was calculated after 40 traffic events.  Head injury criteria values for both root zones 

were significantly influenced as a result of traffic.  
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CHAPTER 1 – DETERMINING CRITICAL FALL HEIGHT FOR BERMUDAGRASS 

GROWN ON SAND AND NATIVE SOIL ROOT ZONES
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1. Abstract 

Surface hardness is typically measured using a Clegg Impact Soil Tester (ASTM F355-

D), but recent trends in sports turf are to use the F355-E missile as a potential alternative, 

because it may provide a more meaningful measurement.  Forty traffic events were applied to 

‘Tifway’ bermudagrass grown in an ASTM constructed sand root zone and a silt loam soil on the 

Center for Athletic Field Safety at the University of Tennessee.  An F355-E was used to measure 

head injury criteria (HIC) for both root zones after every eight traffic events.  Head injury criteria 

values were regressed to varying drop heights to calculate critical fall height (CFH) for both root 

zones.  Critical fall height is the maximum height an athlete can fall from where the surface 

meets the impact attenuation performance criterium (1000 HIC) established by World Rugby for 

synthetic turf surfaces.  Critical fall height for the ASTM constructed sand root zone was 2.3 m, 

while CFH for the silt loam soil was 2.0 m.  The differences in CFH were due to soil 

compaction.  After 40 traffic events, the average soil bulk density of the ASTM constructed sand 

root zone was 1.3 g/cm3, and the silt loam was 1.4 g/cm3.  A 2.3 m CFH of the ASTM root zone 

occurred during the initial testing, before the loss of green turf cover.  A 2.0 m CFH of the silt 

loam soil was calculated after 40 traffic events.  Head injury criteria values for both root zones 

were significantly influenced as a result of traffic.  
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1. Introduction 

It is estimated that there are 25 million scholastic and 20 million community-based juveniles 

who participate in sports annually in the United States (Micheli, 2000).  Athletic fields must be 

maintained regularly by alleviating soil compaction to reduce the number of surface-related 

injuries to this large population.  Approximately 10% of sports concussions are related to the 

athlete’s head striking the turf surface (Guskiewicz et al., 2000).  In 2004, the Sports Turf 

Managers Association estimated that over 40,000 sports fields are used every year in the United 

States (Campbell, 2004).  With this many fields, there are a wide variety of management inputs 

from low resource community/municipal fields to high resource college and professional sports 

fields.  Athletes and coaches constantly demand safe, consistent playing surfaces (Christians, 

2004).  This creates a challenge for sports field managers to provide consistent and safe playing 

conditions, regardless of resource inputs.  It is often difficult to maintain stringent safety 

expectations on fields that receive excessive traffic.  Excessive traffic can occur on any field 

used for multiple sporting events. 

Traffic reduces playing surface consistency and potentially increases player injury risk 

(Carrow and Petrovic, 1992).  A consistent, uniform surface enhances athlete performance 

(Cockerham, 1993).  Sports such as football, rugby, and soccer are fast-paced making proper 

maintenance of turfgrass fields important.  Turfgrass provides a unique, inexpensive cushioning 

effect that reduces injuries when compared to worn athletic fields lacking turfgrass cover 

(Gramckow, 1968).  A higher percentage of turfgrass cover usually provides a safer playing 

surface by reducing the impact force of athletes when they fall to the ground on soils with high 

clay content.  During an athletic event, athletes constantly make dynamic maneuvers, which can 
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impact turfgrass cover.  Often, athletes wear cleated footwear, for performance, increasing 

turfgrass damage compared to shoes with smooth outsoles.   

Both warm and cool-season grasses can be used for athletic surfaces in the transition 

zone.  Bermudagrass (Cynodon spp.) is the most common turfgrass species used on athletic fields 

as a result of its superior traffic tolerance and recuperative potential during prolonged periods of 

summer heat compared to other species (Sever et al., 2020).  In the transition zone, bermudagrass 

athletic fields are often overseeded with perennial ryegrass (Lolium perenne L.) during fall, 

winter, and spring to allow for an actively growing surface with desirable green cover (Ward et 

al., 1974).  Multi-use facilities, such as high school fields, often do not have budgets to overseed 

perennial ryegrass into bermudagrass, potentially damaging or wearing out the playing surface as 

a result of excessive use when environmental conditions are not favorable for growth and 

recovery (Goddard et al., 2008).  Excessive soil moisture can also lead to the rapid deterioration 

of an athletic field.  Native soil moisture content should range from 0.07-0.20 m3 m-3, while sand 

constructed root zones should range from 0.05-0.27 m3 m-3 for maintaining maximum percent 

green cover when trafficked (Dickson et al, 2018a).  Compacted native soil root zones consisting 

of high percentages of silt and clay limit turfgrass root growth due to the limited availability of 

oxygen found in the soil (Peterson, 1974).  While excessive use decreases turfgrass cover, it also 

increases soil compaction (Carrow, 1992). 

Hybrid bermudagrasses [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] are 

preferred for athletic fields due to a fine leaf texture and dense turfgrass canopy (Trenholm et al., 

2000; Younger, 1958). ‘Tifway’ bermudagrass has been shown to have improved simulated 

athletic traffic tolerance compared to other hybrid and common bermudagrass cultivars (Goddard 

et al., 2008; Thoms et al., 2011; Haselbauer, 2010; Brosnan and Deputy 2009). Trappe et al. 
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(2009) reported that ‘Riviera’, Tift No. 4, and ‘Tifway’ exhibited the best traffic tolerance in a 

study of 42 bermudagrasses using the Cady Traffic Simulator (CTS). When comparing varieties 

of seashore paspalum (Paspalum vaginatum Sw.) to hybrid bermudagrass, ‘Tifway’ 

bermudagrass provided some of the lowest surface hardness conditions, along with reducing soil 

compaction the most (Thoms et al., 2011).  As a warm-season grass, ‘Tifway’ provides superior 

traffic tolerance and is an excellent selection for athletic fields within the transition zone. 

Practice fields often receive less attention during design and construction, and are 

subjected to greater use, generally have lower maintenance, and usually have a harder surface 

than game fields (Cockerham, 1993).  Cockerham (1989) reported during games, the majority of 

foot traffic on a football field occurs between the 40-yard lines, covering the width of the hash 

marks [5.7 m for the National Football League and 12.2 m for the National Collegiate Athletic 

Association (NCAA)].  Athletes spend most of their time during the week on the practice field, 

which often have lower maintenance inputs compared to the game field.   

Athletic field root zones can be comprised of various soil types.  Three common root 

zones are ASTM sand constructed, USGA sand constructed, and native soil.  Both the ASTM 

constructed sand and USGA constructed root zones were designed to facilitate drainage, that is 

more resistant to soil compaction to maintain a consistent playing surface (ASTM, 2011).  The 

ASTM sand constructed root zone allows more fine gravel (3.4 to 4.75 mm diameter particles) 

and total fine sized particles (<0.05 mm diameter particles) than root zones constructed to the 

United States Golf Association construction specifications.  Native soil root zones are common 

in low budget athletic fields due to the costs associated with constructing root zones from sand.  

Native soil root zones contain high amounts of silt and clay, making them not as consistent as 

sand constructed root zones due to their lack of drainage ability. 
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 Soil compaction is defined as the pressing together of soil particles and destruction of 

aggregates by vehicular and foot traffic resulting in a denser soil mass with reduced 

macroporosity, increased soil bulk density (SBD), and greater soil strength (Topp and Ferré, 

2002).  Soil compaction is considered a common and consequential problem with recreational 

sites.  Turfgrass growth and development is negatively affected by soil compaction as a result of 

altering the soil’s physical properties (Cockerham and Wiecko, 1989).  Compacted soils 

mechanically impede root penetration.  Changes in SBD  may explain the increased surface 

hardness reported with increasing soil compaction (Brosnan et al., 2009).  Loss of macropore 

space, essential for gas exchange, water movement, and root channels, damages root growth and 

viability, even though soil strength increases (Carrow et al., 2001).  Langvad (1968) stated 

different soil types of athletic fields have more of an effect on ball bounce than mowing height.  

The soil type in general, and more specifically soil moisture content and water movement, are 

considered the key variables in determining playability of sports surfaces (Canaway and Baker, 

1993). 

A modified Cady trafficker (ProCore 648, Toro) was used that was equipped with six 

spring loaded metal plates with nuts simulating cleats, instead of the original metal tines used to 

puncture holes in the soil, similar to the Cady traffic simulator described by Kowalewski et al. 

(2013).  One simulated traffic event is equivalent to the same number of cleat marks that occurs 

between to the hashes, on either 40-yard line during a National Football League or collegiate 

football game (Cockerham, 1989).  This traffic intensity was calculated to be 667 cleat marks per 

square meter (Cockerham, 1989, Henderson et al., 2005).  The traffic simulator is 1.2 m wide, 

which left 15 cm of non-trafficked bermudagrass along the edges of the 1.5 m x 1.5 m plots.   
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Ground reaction forces (GRF) are often 2.5 to 3 times greater than an athlete’s body mass 

while performing an athletic motion (Kent et al., 2012).  These forces subject an athlete’s body 

to serious injury risk (LaStayo et al., 2003).  Playing surface firmness affects GRF and athlete 

performance (Guise, 1996).  An athletic field’s condition has the potential to increase risk of 

injury (Rogers et al., 1994). 

Turfgrass cover is a major factor in providing a uniform, smooth, and safe playing 

surface.  Therefore, bermudagrass percent green cover was measured daily using digital image 

analysis (DIA) (Karcher 2007; Karcher and Richardson, 2003; Richardson et al., 2001).  Digital 

image analysis allows for quantifiable measurements to be taken and eliminates any uncertainty 

that can come from using visual ratings alone.   

Surface hardness is commonly measured using the Clegg Impact Soil Tester (CIST), 

ASTM F355-A, USGA Turf Firmness Meter, and ASTM 3189.  The CIST uses an accelerometer 

mounted inside a 2.5 kg flat-bottomed missile to measure the duration of impact when released 

from 46 cm (Clegg, 1976).  Test results are displayed as peak deceleration in Gmax (Gmax = 

acceleration due to gravity) (ASTM F1702-96; Clegg, 1976; Rogers and Waddington, 1990).  

Gmax values below 30 Gmax are often considered inadequate for enough traction to perform 

athletic maneuvers and values above 180 Gmax are considered to be heavily compacted and 

dangerous (Aldous, 1999).  This is the designated testing method to determine surface hardness 

used by the National Football League (Mack et al., 2019) and American Society for Testing and 

Materials (ASTM, 2002).   Another device used to measure Gmax is the ASTM F355-A.  This 

device is the standard test for synthetic turf surfaces according to previous research that indicates 

the ASTM F355-A is associated with head injury risk (ASTM F1936-10, 2010).  The ASTM 

F355-A measures the impact attenuation of both natural and synthetic turf systems by 
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determining peak impact acceleration.  The ASTM F355-A uses an accelerometer mounted 

inside a 9.1 kg flat-bottomed missile to measure peak impact acceleration (Gmax) when dropped 

from 61 cm through a guide tube.  The missile is dropped three times in the same location with a 

60 second time interval between drops.  The average Gmax of the second and third drops are 

reported with values greater than 200 Gmax being associated with increases risk of traumatic brain 

injury (Gadd, 1966).  The USGA Turf Firmness Meter is another device used to measure surface 

hardness.  This device is most commonly used to measure surface firmness of putting greens due 

to its shape, resembling a golf ball, causing less surface damage than the CIST.  A 1.95 kg 

missile equipped with an accelerometer is dropped from 69 cm through a metal guide tube that 

measures surface penetration (in) as the missile impacts the surface. 

The ASTM 3189 is a mechanical device used in the FIFA quality concept to measure 

surface firmness characteristics (Fédération Internationale de Football Association, 2015).  The 

device utilizes a 20 kg missile with a helical metal spring dropped from 5.5 cm to measure force 

reduction, energy restitution, and vertical deformation as the missile impacts the surface.  Force 

reduction is the measure of shock absorption percentage by a surface.  Lower percentages are 

associated with firmer surfaces, due to the surface absorbing less of the impact.  Vertical 

deformation is the distance a foot is expected to deform the surface during a match.  Higher 

numbers are associated with softer surfaces.  The drop mechanism utilizes an electromagnet 

controlled by a remote to consistently drop the missile to the surface.  Only force reduction and 

vertical deformation are included in the standard used for FIFA.  Vertical deformation must be 

between 4 and 11 mm, while force reduction must be between 55% and 77% (Fédération 

Internationale de Football Association, 2015). 
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The ASTM F355-E (Figure 1) utilizes a 10.1 kg missile with a hemispherical design to 

quantify head-related injuries using HIC.  The work of Gadd (1966) encouraged the National 

Highway Traffic Safety Administration to start using HIC.  This device is commonly used for 

testing the hardness of playground surfaces.  A CFH can be determined if HIC is known (ASTM, 

1999).  Critical fall height is correlated with impact attenuation (Mack, et al., 2000) and is the 

maximum fall height that would not result in a life-threatening head injury.  Sixteen percent of 

the population would suffer a traumatic head injury when HIC reaches 1000 (Torg, 1991).  

Playgrounds are designed to be safe for children in which they should not be able to fall from a 

height that would put their health in danger.  Head Injury Criteria is derived from the time 

interval within the acceleration-time history of the impact over which the HIC integral is 

evaluated (ASTM, 2017).   

Injuries to an athlete’s head are of great concern during sporting events (Centers for 

Disease Control and Prevention, 1997).  Each year, athletes suffer an estimated 300,000 

traumatic brain injuries with concussions occurring during many of these injuries (Sosin et al., 

1996).  Football players who suffer a concussion are three times more likely to suffer a second 

concussion in the same season than other players who had not suffered a previous concussion 

(Guskiewicz et al., 2000).  A concussion caused by a sport related incidence is a common type of 

traumatic brain injury resulting in 200,000 annual emergency room visits in the United States 

(Sone et al., 2018).  Ten percent of all soccer concussions are due to impacts between the head 

and surface (Boden et al., 1998).  Most surface hardness test instruments are not related to field 

safety, whereas the ASTM F355-E has been shown to provide a measure of field safety as related 

to critical fall height (CFH). 
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The objectives of this study were to determine critical fall height (CFH) changes for 

trafficked bermudagrass athletic fields grown on native soil and a sand root zone meeting ASTM 

specification root zones and to determine the relationship between changes in percent green 

turfgrass cover (PGC) and CFH.  
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1. Materials and Methods 

 A study to determine the CFH of simulated trafficked bermudagrass athletic fields was 

conducted at the University of Tennessee Center for Athletic Field Safety (Knoxville, TN) from 

2016 to 2018.  Testing was performed on each of two 4.6 m x 9.1 m simulated athletic fields 

established with hybrid bermudagrass (Cynodon dactylon x C. transvaalensis) var. Tifway, 

constructed with either an American Standard for Testing Materials (ASTM) sand or a native silt 

loam soil.  One plot of each soil type was used for spring and fall.  The native soil root zone was 

a Sequatchie silt loam soil (fine-loamy, siliceous, semiactive, thermic Humic Hapludult) (28% 

sand, 48% silt, and 24% clay) with a 6.2 pH, 9 mg Kg-1 initial phosphorous, 81 mg kg-1 initial 

potassium, and 25 g kg-1 organic matter content (OM).   

For both spring test dates (2017 and 2018), the same pair of simulated athletic fields of 

each root zone was tested, allowing plots to recover during their offseason.  Each season, the two 

soil type treatments were divided into 18 plots, and surface impact characteristics, digital images, 

and volumetric soil water content were measured. The study design was arranged as a 

randomized complete block design with three replications with volumetric soil water content as a 

covariate.   

Granular urea fertilizer (46 N-0 P2O5-0 K20-0) was applied monthly at 49 kg N ha-1 from 

May through October during this study.  All plots were mown at 2.2 cm three times each week 

using a triplex reel mower (Jacobsen TriKing 1900D; Textron Inc., Providence, RI), and 

clippings were returned.  Irrigation was applied as necessary to prevent drought stress during the 

experiment duration.   

Two simulated traffic events were applied four times per week for four consecutive 

weeks during fall (12 September - 13 October 2016 and 18 September – 19 October 2017) and 
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spring (16 May – 15 June 2017 and 16 May – 21 June 2018). Each four-week trafficking period 

comprised a simulated athletic field season consisting of 40 traffic events.  When a season 

concluded, a recovery process was performed.  ASTM sand plots were core aerified, cores were 

removed, and sand topdressing was applied to fill holes.  Native soil plots were core aerified and 

soil was reincorporated into the surface using a metal drag mat. The same recovery process was 

performed for both spring and fall plots.  Each year, treatments applied to each simulated athletic 

field were rerandomized to minimize aggregate effects of simulated traffic.  

Surface hardness Gmax was measured after every eight simulated traffic events using a 

CIST, performing seven drops per plot without testing the same location more than once.   

Percent green cover was measured using digital image analysis after every eight 

simulated traffic events, according to methods described by Karcher and Richardson (2003).  

Prior to DIA, leaf litter was blown off of each plot using a gas-powered blower (Stihl, Virginia 

Beach, VA).  All DIA pictures were taken using a Canon PowerShot G12 (Canon, Tokyo, 

Japan).  The camera was arranged on top of an enclosed light box with four 40-W spring lamps 

(TCP, Lighthouse Supply, Bristol, VA), perpendicular to the turf surface that allowed for the 

same light exposure to be applied to all the pictures taken.  Each picture was taken from the same 

location each day by marking a small white dot on each plot, indicating where the left tire of the 

light box should rest on the ground.  Sigma Scan Pro 5 Software (Systat Software, San Jose, 

California) was used to count the pixilation of green pixels exhibiting a hue between 45 and 135 

and saturation 0 to 100% from the total pixels in each image, to determine the percent green 

cover of each plot. 

  Critical fall height was measured prior to treatment initiation and after every eight 

simulated traffic events.  Three drop heights (1.3 m, 1.9 m, and 2.5 m) consisting of three drops 
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per height were tested with the ASTM F355-E.  The testing apparatus includes a tripod equipped 

with a hook on each leg that allows the missile to be accurately dropped in three separate 

locations within each plot.  Due to the mass, hemispherical shape, and drop height of the missile, 

each drop creates a depression on the playing surface that makes the testing surface uneven.  

Each drop was marked to avoid dropping the missile or the CIST in the same location during 

future tests. 

When CFH and CIST data was collected, soil volumetric water content was measured 

using a handheld time domain reflectometer (TDR) using 7.6 cm probes (FieldScout 300 Probe, 

Spectrum Technologies, Inc. Plainfield, IL).  Soil volumetric water content was a covariate of 

CFH and CIST and analyzed according to Dickson et al., (2018a). 

Soil bulk density was measured at the end of the study by collecting 15 undisturbed soil 

cores each for nontrafficked and trafficked locations within each root zone, using a 5 cm x 5 cm 

core sampler (Forestry Suppliers, Inc. Jackson MS) for a volume of 98.2 cm3 according to Topp 

and Ferré (2002).   

A four-way (soil type x simulated traffic event x season x year) analyses of covariance 

(ANCOVA) was run initially and conducted in SAS (v. 9.4; SAS Institute Inc., Cary, NC).  The 

covariate used in the analysis was volumetric soil water content.  Main effects included soil type, 

simulated traffic events, season, and year.  Main effects and interactions for season and year 

were not significant; therefore, data were pooled and reanalyzed in a two-way ANCOVA (soil 

type x simulated traffic event) (Table 1).  The factors used in the ANCOVA were CFH, CIST, 

PGC, SBD, and OM (Table 1).  Fisher’s least significant difference (LSD) was used to separate 

means at α = 0.05.    
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1. Results and Discussion 

There were no significant interactions by year or by season for CFH, surface hardness, 

PGC, SBD, and OM, respectively (Table 1). The lack of main effect differences in year and 

season resulted in data being pooled, the following results are discussing pooled data by year and 

season. 

There was a significant CFH difference between ASTM sand and native soil root zones 

(Figure 2).  The CFH for the ASTM sand root zone was 2.53 m, where the native soil root zone 

was 2.06 m. The higher CFH for the ASTM sand root zone could be due to sand resisting 

compaction compared to the native soil (higher silt plus clay content).  The CFHs for both root 

zones were nearly 95% higher (ASTM sand root zone) and 58% higher (native soil root zone) 

than the minimum allowable height (1.3 m) established by World Rugby for synthetic turf 

(ASTM, 2018).   

Traffic significantly increased CFH by 0.1 m from zero (2.24 m) to the eighth (2.34 m) 

simulated traffic events (Figure 3). Between the 16th (2.38 m) and the 24th (2.25 m) simulated 

traffic event, CFH significantly decreased to 2.25 m, and was not different from zero simulated 

traffic events.  Critical fall height did not change for the remainder of the study (24th – 40th 

simulated traffic events).  An increase of 0.1 m in CFH is just outside (6%) the 5% sensitivity of 

the instrument.  Thus, this significant effect could mostly be due to instrument sensitivity.  

Additionally, the biological significance of a 0.1 m increase in CFH is unknown.  Irrespective of 

root zone, the CFH measured in this study was much higher than the allowable 1.3 m CFH 

established by World Rugby for synthetic turf.  This finding indicates that CFHs of turfgrasses 

are potentially safer than the safety limits imposed by World Rugby.  At this time, there is no 

CFH safety limit established by any sport governing body for a turfgrass surface. 
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The native soil root zone always generated higher Gmax values than the sand root zones 

(Figure 4).  An average increase of 6 Gmax for the native soil root zone (64 Gmax) was measured 

when compared to the ASTM sand root zone (58 Gmax).  This comparison suggests native soil 

root zones can maintain a similar Gmax as ASTM sand root zones if proper maintenance is 

performed.   However, Dickson et al., (2018a) also found soils with higher silt plus clay content 

had higher Gmax values.  ASTM sand root zones contain higher macropore space, and are not as 

conducive to compaction.  ASTM sand root zones are used to provide a consistent playing 

surface, even in inclement weather.  The use of sand allows water to drain through the soil 

profile at a higher rate than root zones containing a high percentage of clay.  Measured Gmax 

values consistently demonstrated the same relationship that was observed with CFH, mainly that 

the ASTM sand root zone was more resilient than the native soil root zone.  

As simulated traffic events were applied, Gmax values increased (Figure 5).  From 0 to 40 

simulated traffic events, surface hardness increased by 24 Gmax.  Under similar management, 

traffic had a 4x influence on increasing Gmax compared to soil type.  While Gmax values increased 

for both root zones with increased simulated traffic events, soil bulk density from 0 – 40 

simulated traffic events increased, but was not statistically significant (Table 1).  As traffic 

events increased, Gmax increased, similar to previous research by Thoms et al., 2011, and 

Dickson et al., 2018a.  In my study, Gmax values increased after 40 simulated traffic events, but 

CFH was not different. Using the ASTM F355-E and CIST devices, dissimilarities in results 

were observed due to surface impact characteristics.  Impacts with the two devices differ because 

of the masses of the missiles, impact velocities, and surface area impact.  These results support 

that the ASTM F355-E and CIST devices are measuring different volumes of a root zone’s 

response to impact.  
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Percent green cover decreased as a result of traffic (Figure 6).   Significant decreases (R2 

= 0.9954) in PGC were observed after every 8 simulated traffic events (0 – 40 simulated traffic 

events).  A number of previous studies have shown increasing traffic decreases PGC (Cockerham 

et al., 1990, Thoms et al., 2008, Trappe et al., 2011, Kowalewski et al., 2015, and Dickson et al., 

2018a).  Critical fall height significantly increased when PGC was between 86% and 72% after 8 

or 16 simulated traffic events (Figures 3 and 6).  Prior to 8 and after 16 simulated traffic events, 

CFH was not significantly different despite a 63% decrease in PGC over the duration of the trial 

(Figure 6).  One possible explanation for this result could be as PGC decreases slightly, the soil 

surface is exposed and can be displaced more readily due to a lack of vegetative cover.  Then, as 

PGC decreases below 72%, vegetative cover ceases to affect CFH.  Conversely, as PGC 

decreased, the loss of vegetative cover on the surface was a likely reason for higher Gmax values 

(Figure 6).  This finding supports that the ASTM F355-E and CIST are measuring impact 

characteristics from different volumes of soil.  Previous research by Brosnan et al. (2009) 

showed surface conditioners of skinned baseball surfaces did not significantly affect baseball 

impact characteristics, rather the soil moisture of the clay below the treatments was significant.   

Testing at various of soil volumetric water contents was outside the scope of this study. 

Future studies are warranted to understand how CFH is influenced by soil characteristics and 

volumetric water contents.  For example, one study might evaluate the volume or depth of soil 

that affects CFH as compared to other surface impact devices.  Another area of study could be 

determining optimal combinations of maintenance practices that allow a field manager to 

maintain PGC as traffic occurs over a season (Figure 6).  If PGC were able to be consistently 

maintained above 72%, one should expect that CFH, Gmax, and SBD would support an optimal 

turfgrass sports field.  
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1. Conclusions 

 The CFHs identified for natural grass in this study were nearly 95% higher than the 

minimum height (1.3 m) established by World Rugby for synthetic turf.  The CFHs measured on 

natural grass with an ASTM sand root zone were also high enough to be acceptable for use on 

playgrounds.  These studies found that the ASTM F355-E and the CIST measured different 

regions of the turfgrass system for surface impact characteristics.  It is important that future 

studies evaluate these differences.   
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Table 1. Partial analysis of variance for soil type, simulated traffic event, season, soil bulk 

density, and organic matter on hybrid bermudagrass (Cynodon dactylon X C. transvaalensis 

Burtt Davy), when volumetric water content was included as a covariate, Knoxville, TN, during 

12 September – 13 October 2016, 16 May – 15 June 2017, 18 September – 19 October 2017, 16 

May – 21 June 2018, respectively.  

Treatments DF CFH Clegg PGC SBD OM 

Soil type (T) 1 *** ** NS NS NS 

Simulated Traffic 

Event (E) 

39 ** *** *** NS NS 

Season (S) 1 NS NS NS NS NS 

Year (Y) 1 NS NS NS NS NS 

T*E 39 NS NS NS NS NS 

T*S 1 NS NS NS NS NS 

T*Y 1 NS NS NS NS NS 

E*S 39 NS NS NS NS NS 

E*Y 39 NS NS NS NS NS 

T*E*S 39 NS NS NS NS NS 

T*E*Y 39 NS NS NS NS NS 

T*E*S*Y 39 NS NS NS NS NS 

*, **, ***, significant at the 0.05, 0.01, and 0.001 probability levels, respectively    
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Appendix B.  Figures  
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Figure 1.  ASTM F355-E on hybrid bermudagrass [‘Tifway’ Cynodon dactylon (L.) Pers. X 

Cynodon transvaalensis, Burtt-Davy], Knoxville, TN.    
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Figure 2.  Transformed critical fall height values of an ASTM sand constructed root zone and 

native soil root zone pooled after 40 simulated traffic events on hybrid bermudagrass [‘Tifway’ 

Cynodon dactylon (L.) Pers. X Cynodon transvaalensis, Burtt-Davy], when volumetric soil water 

content was included as a covariate, Knoxville, TN.  12 September – 13 October 2016, 16 May – 

15 June 2017, 18 September – 19 October 2017, 16 May – 21 June 2018, respectively.     
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Figure 3.  The impacts of simulated traffic events for transformed critical fall height values to 

determine a critical fall height of 1000 head injury criteria pooled using an ASTM sand 

constructed root zone and native soil root zone on hybrid bermudagrass [‘Tifway’ Cynodon 

dactylon (L.) Pers. X Cynodon transvaalensis, Burtt-Davy], when volumetric soil water content 

was included as a covariate, Knoxville, TN.  12 September – 13 October 2016, 16 May – 15 June 

2017, 18 September – 19 October 2017, 16 May – 21 June 2018, respectively.     
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Figure 4.  Transformed Surface hardness (Gmax) of an ASTM sand constructed root zone and 

native soil root zone pooled over 40 simulated traffic events on hybrid bermudagrass [‘Tifway’ 

Cynodon dactylon (L.) Pers. X Cynodon transvaalensis, Burtt-Davy], when volumetric soil water 

content was included as a covariate in Knoxville, TN.  12 September – 13 October 2016, 16 May 

– 15 June 2017, 18 September – 19 October 2017, 16 May – 21 June 2018, respectively.     
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Figure 5.  Surface hardness (Gmax) of an ASTM sand constructed root zone and native soil root 

zone following 0, 8, 16, 24, 32, and 40 simulated traffic events to hybrid bermudagrass [‘Tifway’ 

Cynodon dactylon (L.) Pers. X Cynodon transvaalensis, Burtt-Davy] when volumetric soil water 

content was included as a covariate in Knoxville, TN.  12 September – 13 October 2016, 16 May 

– 15 June 2017, 18 September – 19 October 2017, 16 May – 21 June 2018, respectively.     
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Figure 6.  Percent green turfgrass cover of an ASTM sand constructed root zone and native soil 

root zone following 0, 8, 16, 24, 32, and 40 simulated traffic events to hybrid bermudagrass 

[‘Tifway’ Cynodon dactylon (L.) Pers. X Cynodon transvaalensis, Burtt-Davy] when volumetric 

soil water content was included in a covariate in Knoxville, TN.  12 September – 13 October 

2016, 16 May – 15 June 2017, 18 September – 19 October 2017, 16 May – 21 June 2018, 

respectively.     

y = -12.824x + 109.58

R² = 0.9954

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40

P
er

ce
n

t 
G

re
en

 C
o

v
er

 (
P

G
C

) 



www.manaraa.com

38 

 

COMPARING GROUND REACTION FORCES GENERATED USING 

STANDARD SPORTS TURF SURFACE TESTING DEVICES   
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Table 2.  Summary of ground reaction forces of a human, compared to all devices tested over 

synthetic turf (AstroTurf Gameday 3D60) on a force platform with various drop heights in a 

biomechanics laboratory at the University of Tennessee in Knoxville, TN during 6 December, 

2017.  

Test Drop Height (cm) GRF (N) without 

Shockpad 

GRF (N) with 

Shockpad 

% Change 

(w/ & w/o 

Shockpad) 

CIST (46) 2084 1612 23 

F355-A (61) 11295 7695 32 

TruFirm (69) 781 752 4 

F355-E (60) 5517 4223 23 

F355-E (100) 8386 6245 26 

F355-E (130) 10384 7739 25 

AAA (5.5) 2742 2463 10 

Human* (60) 1078 1025 5 

*Human data obtained from Qu et al., 2020.  
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Table 3.  Summary of ground reaction forces of multiple surface testing devices tested over 

artificial turf (AstroTurf Gameday 3D60) with and without a pad in a biomechanics laboratory at 

the University of Tennessee during 6 December 2017 in Knoxville, TN. 

Treatments GRF 

Device *** 

Pad *** 

Device*Pad *** 
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SUMMARY 

There are a variety of testing instruments used to test the performance of turfgrasses.  

Most of these devices used to evaluate the firmness of playing surfaces use different masses and 

shapes, and are dropped from varying heights.  The CIST, ASTM F355-A, ASTM F355-E, 

ASTM F3189, and USGA TruFirm Turf Firmness Meter were all tested on synthetic turf over a 

force platform (1200 HZ, Advanced Mechanical Technologies, Inc., Watertown, MA, USA) to 

determine the ground reaction forces (Newtons) for each individual testing device (Table 2).  A 

piece of synthetic turf (AstroTurf Gameday 3D60, AstroTurf, Dalton, GA, USA) was cut to fit 

the force platform (60 cm x 60 cm) and was infilled with sand and rubber according to installer 

specifications.  The GRF of each device was measured over the force platform according to their 

standard operating procedures.   

 There were GRF differences between testing devices when dropped over the force 

platform (Table 3).  Therefore, these devices are not recommended to be used to predict athlete 

performance. 
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